
Converting Scripts into Reproducible Workflow
Research Objects

Lucas A. M. C. Carvalho
Institute of Computing
University of Campinas

Campinas, Brazil
Email: lucas.carvalho@ic.unicamp.br

Khalid Belhajjame
LAMSADE

Paris-Dauphine University
Paris, France

Email: Khalid.Belhajjame@dauphine.fr

Claudia Bauzer Medeiros
Institute of Computing
University of Campinas

Campinas, Brazil
Email: cmbm@ic.unicamp.br

Abstract—Scientific discovery and analysis are increasingly
computational and data-driven. While scripting languages, such
as Python, R and Perl, are the means of choice of the majority of
scientists to encode and run their data analysis, scripts are gen-
erally not amenable to reuse or reproducibility. Scripts do rarely
get reused or even shared with third party scientists. We argue
in this paper that the reproducibility of scripts can be promoted
by converting them into workflow research objects. A workflow
research object encodes a script into a production (executable)
workflow that is accompanied by annotations, example datasets
and provenance traces of their execution, thereby allowing third
party users to understand the data analysis encoded by the
original script, run the associated workflow using the same or
different dataset, or even repurpose it for a different analysis. To
this end, we present a methodology for converting scripts into
workflow research objects in a principled manner, guided by
requirements that we elicited for this purpose. The methodology
exploits tools and standards that have been developed by the
community, in particular YesWorkflow, Research Objects and
the W3C PROV. It is showcased using a real world use case
from the field of Molecular Dynamics.

I. INTRODUCTION

Scripting languages have gained momentum among scien-
tists as a means for enacting computational data analysis.
Scientists in a number of disciplines use scripts written in
general-purpose languages such as Python, R and Perl in their
daily data analysis and experiments. We note, however, that
scripts are difficult to understand by third parties who were
not involved in their development (and sometimes even by the
same scientists who developed them); they are, as such, not
amenable to reuse and reproducibility. This is witnessed by a
number of initiatives that were launched to bring some of the
rich features that traditionally come with scientific workflow
systems to manage scripts, see e.g., [1]–[4]. For example,
McPhilips et al. [1] developed YesWorkflow, an environment
for extracting a workflow-like graph that depicts the main
components that compose a script and their data dependencies
based on comments that annotate the script. Murta et al. [3]
proposed noWorkflow, which also captures provenance traces
of script executions.

While the above proposals bring new useful functionalities
for understanding scripts and their execution traces they do
not enable reuse or reproducibility of scripts. For example, the
workflow-like graph obtained using YesWorkflow is abstract

(in the sense that it cannot be executed by the scientists).
On the other hand, the provenance traces captured using
noWorkflow are fine-grained, and therefore cumbersome, for
the user who would like to understand the lineage of the script
results [2].

To address the above issues and complement the landscape
of solutions proposed by the community for promoting the
reuse and reproducibility of scripts, we present in this pa-
per a methodology for converting scripts into reproducible
Workflow Research Objects [5] (WRO). WRO are Research
Objects that encapsulate scientific workflows and additional
information regarding the context and resources consumed
or produced during the execution. In more detail, given a
script, the methodology we propose drives the creation of
research objects that contain the scripts that the scientist
authored together with executable workflows that embody
and refine the computational analyses carried out by these
scripts. These WROs also encapsulate provenance traces of the
execution of those workflows, as well as auxiliary resources
that help third party users to understand and reproduce such
analyses. Examples of those resources include annotations that
describe workflow steps, the hypotheses investigated by the
data analyses that the scripts incarnate and the findings that
the scientists may have made. We argue that such Workflow
Research Objects provide potential users with the means to
understand, replicate and reuse the data analyses carried by the
scripts or part thereof – thanks to the executable workflows
that embody such analyses and the accompanying auxiliary
resources.

While developing the methodology, we strived to exploit
tools and standards that were developed by the scientific
community, in particular, YesWorkflow, Research Objects, the
W3C PROV recommendations 1 as well as the Web Annotation
Data Model 2. To showcase our methodology, we use a real-
world case study from the field of Molecular Dynamics.

The paper is organized as follows. Section II presents the
case study that we use as a running example throughout the
paper. Section III identifies the requirements that guided the
development of our methodology, which is overviewed in

1https://www.w3.org/TR/prov-overview/
2https://www.w3.org/TR/annotation-model

https://www.w3.org/TR/prov-overview/
https://www.w3.org/TR/annotation-model

section IV. Sections V through VIII show in detail each step
of our methodology. Section IX briefly discusses related work.
Finally, Section X concludes the paper underlining our main
contributions and discussing our ongoing work.

Throughout this paper, we differentiate between at least two
kinds of experts – scientists and curators. Scientists are
the domain experts who understand the experiment, and the
script; this paper also calls them, sometimes, users. Curators
may be scientists who are also familiar with workflow and
script programming, or, alternatively, computer scientists who
are familiar enough with the domain to be able to implement
our methodology. Curators are moreover responsible for au-
thoring, documenting and publishing workflows and associated
resources.

II. CASE STUDY - MOLECULAR DYNAMICS

The motions of individual atoms in a multimolecular phys-
ical system can be determined if the forces acting on every
atom are known; these forces may result from their mutual
interactions or from the action of an external perturbation.
Determining such motions is key to understanding the physical
and chemical properties of a given system of interest.

Molecular dynamics (MD) simulations consist of a series
of algorithms developed to iteratively solve the set of coupled
differential equations that determine the trajectories of individ-
ual atoms that constitute the particular physical system. This
involves a long sequence of scripts and codes.

MD simulations are used in many branches of material
sciences, computational engineering, physics and chemistry.

A typical MD simulation experiment receives as input the
structure, topology and force fields of the molecular system
and produces molecular trajectories as output. Simulations are
subject to a suite of parameters, including thermodynamic
variables.

Many groups have implemented their specific MD simu-
lations using special purpose scripts. In our case, a suite of
scripts was designed by physiochemists [6]; its inputs are the
protein structure (obtained from the RCSB PDB protein data
bank3), the simulation parameters and force field files.

There are many kinds of input files and variables, and their
configuration varies with simulation processes. For instance,
the input multimolecular structure contains the initial set of
Cartesian coordinates for every atom/particle in the system,
which will evolve in time in the MD simulation. This initial
structure varies according to the system to be simulated and
research area. Our case study (biophysical chemistry) requires
immersing proteins in a solvent. Protein Cartesian atomic
coordinates are made available in specialized data repositories,
most notably the Protein Data Bank (PDB). Typical systems
contain from several thousands to millions of covalently bound
atoms.

The main raw product of any MD simulation is a large set
of interrelated molecular trajectories. Trajectory data is usually
stored for subsequent analyses and consists of thousands of

3http://www.rcsb.org/pdb/

time-series of the Cartesian coordinates of every atom of the
system.

In this paper, we will use a script that sets up a MD
simulation. The script will be presented later on (see Listing
1), and used as a running example throughout the paper.

III. REQUIREMENTS FOR SCRIPT CONVERSIONS

This section presents the requirements that guided the
development of our solution, and section IV outlines the
methodology we designed to meet them.

Since scripts are usually fine-grained, they are hard to under-
stand - sometimes even the script author does not understand
a script s/he developed in the past. To facilitate the task
of understanding the script, its author may modularize the
script by organizing it into functions. While modularity helps,
the functions that compose the script are obtained through a
refactoring process that primarily aims to promote code reuse
via the reuse script, as opposed to reuse via the main (logical)
data processing units that are relevant from the point of view
of the computational analysis implemented by the script. This
leads us to the first requirement.

Requirement 1: To help the scientist understand a script
S, s/he needs a view of S that identifies the main processing
units that are relevant from the point of view of the in
silico analysis implemented by the script, as well as the
dependencies between such processing units.

The idea, here, is to provide curators with automatic means
to obtain a workflow-like view of the script, i.e., an abstract
workflow revealing the computational processes and data flows
otherwise implicit in these scripts, displaying modules, ports,
and data links. Though graphical visualizations may be useful
to promote understandability of scripts, large scripts may result
in very large (abstract) workflows. Thus, curators need to
be able to create a multi-level view of scripts (e.g., through
encapsulation of sub-workflows into more complex abstract
tasks), or to pose queries against this workflow-like view.

An abstract workflow is a preliminary requirement to our
end-goal, namely, to provide curators with the means to
generate a (concrete) workflow that can be executed using
a workflow management system. This, in turn, will bring
to the scientists benefits that such systems provide, such as
retrospective provenance recording.

Requirement 2: The user should be able to execute the
workflow that embodies the script S.

Though seemingly obvious, this is far from being a trivial
requirement. It is not enough to ”be able to execute”. This
execution should reflect what is done in the script S. In other
words, not only should the workflow generated be executable;
the scientist must be given the means to compare its results
to those of script execution. In many cases, results will not be
exactly the same, but similar. This also happens with script ex-
ecution, in which two successive runs with identical inputs will
produce non-identical results that are nevertheless valid and
compatible. Thus, this requirement involves providing means
of comparing the execution of script S and the workflow, and
validating the workflow as a valid embodiment of the script.

http://www.rcsb.org/pdb/

Requirement 3: The curator should be able to modify
the workflow that embodies the script S to use different
computational and data resources.

Not only may a scientist want to be able to replicate
the computational experiment encoded by S; s/he may want
to repeat the analysis implemented in the script using third
party resources – e.g., which implement some activities in
the workflow via alternative algorithms and/or different and
potentially larger datasets. For example, s/he may want to
modify a method call in a bioinformatics script that performs
sequence alignment with a call to an EBI4 web service that
performs a sophisticated sequence alignment using larger and
curated proteomic datasets. By the same token, in a Molecular
Dynamics simulation, a protein data source may be modified.

The new (modified) workflow(s) correspond to versions of
the initial workflow. They will help the user, for example, to
inspect if the results obtained by script S can be reproduced
using different resources (algorithms and datasets). Scientists
will also be able to compare the execution of S with that of
the versions (e.g., if web services are invoked instead of a
local code implementation).

Experiment reusability demands that the appropriate (pieces
of) workflow be identified and selected for reuse. It is not
enough to publish these pieces: potential users must be given
enough information to understand how the workflow came to
be, and how adequate it is to the intended uses. This leads
us to Requirements 4 and 5, respectively involving the need
for provenance information, and the elements that should be
bundled together to ensure full reusability,

Requirement 4: Provenance information should be
recorded.

This involves not only the provenance obtained by workflow
execution. This requirement also implies recording the trans-
formations carried out to transform the script into a workflow
that embodies the script. Moreover, the transformations to
workflows that modify the initial workflow using different
resources also need to be recorded. As stressed by [7],
provenance that is provided by the execution of a workflow
corresponds to a workflow trace, which can be processed as
an acyclic digraph, in which nodes are activities and/or data,
and edges denote relationships among activities and data.

Requirement 5: All elements necessary to reproduce the
experiment need to be captured together to promote repro-
ducibility.

We follow the definition of [7]: ”reproducibility denotes
the ability for a third party who has access to the description
of the original experiment and its results to reproduce those
results using a possibly different setting, with the goal of
confirming or disputing the original experimenter’s claims.”
[7] also differentiates reproducibility from repeatability, for
which results must be the same, and no changes are made
anywhere.

Full reproducibility and reusability require ensuring that
all elements of an experiment are recorded. The script S,

4http://www.ebi.ac.uk

the initial workflow, and all of its versions should be made
available together with auxiliary resources that will allow
understanding how these workflows came to be, and where
they should be used. Such resources must include, at least, the
provenance information documenting the transformation from
the script to the workflows, datasets that are used as inputs,
execution traces of the script and the workflows, as well as
textual annotations provided by the curator.

IV. METHODOLOGY TO ASSIST IN SCRIPT CONVERSIONS

To meet the requirements identified in Section III, we de-
vised a methodology for converting a script into reproducible
workflow research objects [5], [8]. As the use of workflow
specifications on their own does not guarantee support to
reusability, shareability, reproducibility, or better understand-
ing of scientific methods, additional information may be
needed. This includes annotations to describe the operations
performed by the workflow; links to other resources, such
as the provenance of the results obtained by executing the
workflow, datasets used as input, etc. These richly annotation
objects are called workflow-centric research objects [5]. A
Research Object [9] provides the means to specify a kind of
container that gathers resources of different types and provides
a digital analogue of the ’Materials and Methods’ section of
a research paper. Workflow Research Objects [5] (WRO) are
a specific kind of Research Objects that can be viewed as an
aggregation of resources that bundles a workflow specification
and additional information to preserve the workflows and their
context. Workflow research objects can be used by third parties
to understand and run an experiment using the same data
inputs used in the original script as well as different ones
of her/his choosing.

The methodology is depicted in Figure 1, in which each
step corresponds to one requirement. It is composed of five
inter-related steps. Given a script S, the first step Generate
abstract workflow is used to extract from the script an
abstract workflow Wa identifying the main processing steps
that constitute the data analysis implemented by the script, and
their data dependencies. The workflow Wa obtained as a result
in Step 1 is abstract in the sense that it cannot be executed.

Script

Generate	
 Abstract	

Workflow	

Create	
 an	
 executable	

workflow	

Refine	
 workflow	

Bundle	
 Resources	
 into	
 a	

Research	
 Object	

Annotate	
 and	
 check	

quality	

Abstract
workflow

Concrete
workflow

1

2

3

4

5

Fig. 1. Methodology for converting scripts into reproducible Workflow
Research Objects.

http://www.ebi.ac.uk

Given this abstract workflow, the second step Create an
executable workflow converts the abstract workflow into an
executable one We by identifying, for each processing step
in the abstract workflow, the realization that can be used
for its implementation. The executable workflow obtained in
step 2 is then refined in Step 3 by identifying appropriate
third party datasets or processing steps that can, amongst
other things, yield better results, generating workflow versions
We1 . . .Wen. For example, the curator may prefer to use
human annotated datasets than raw datasets with unknown lin-
eage. In order to help potential users understand the workflow,
the curator provides annotations describing the workflow,
and potentially the resources it utilizes. The curator may also
provide examples of provenance traces that have been obtained
as a result of the workflow execution. As well as annotating
the workflow, the curator should run a series of checks to
verify the soundness of the workflow. Once tried and tested,
the workflow and the auxiliary resources, i.e., annotations,
provenance traces, examples of datasets that can be utilized
as well as the original script, are packaged into a Workflow
Research Object (for short, WRO) – see section VIII.

We next present the aforementioned steps in detail.

V. GENERATING AN ABSTRACT WORKFLOW

The objective of this phase is to address Requirement 1
by generating an abstract workflow, Wa, given the script S.
The generation of Wa entails the analysis of S to identify
the main processing units, and their dependencies, that are
relevant from the point of view of the scientists, as opposed
to a programmer. To do so, we adopt the YesWorkflow tool
[1], [4]. It enables scientists to annotate existing scripts with
special comments that reveal the computational modules and
data flows otherwise implicit in these scripts. YesWorkflow
extracts and analyzes these comments, represents the scripts
in terms of entities based on the typical scientific workflow
model, and provides graphical renderings of this workflow.
To the best of our knowledge, YesWorkflow is the only tool
that allow generating a graphical representation of a script as a
workflow. It does so by processing curator-provided tags of the
form @tag value, where @tag is a keyword that is recognized
by YesWorkflow, and value is an optional value assigned to
the tag.

We illustrate the semantics of the tags using Listing 1, which
is an excerpt of a script of our use case (see section II) anno-
tated with YesWorkflow tags. We point out that this excerpt
shows only annotations, having eliminated most of the code.
For the complete code, see 5, the final WRO. The tags @begin
and @end are used to delimit the activities of the workflow,
or the workflow itself. The @begin tag is followed by a name
that identifies the activity in question within the workflow. For
example, Listing 1 shows that the overall workflow, named
setup, is composed of four activities: split, psfgen, solvate,
and ionize. Those activities represent different parts of the

5http://w3id.org/w2share/s2rwro/

script. For example, activity split corresponds to the code in
the script delimited by lines 14 and 27.

The curator can annotate an activity with its description
using the @desc tag. An activity may be characterized by
a set of input and output ports, defined using the tags @in
and @out, respectively. For example, activity split has one
input port named initial structure and three output ports
named protein pdb, bglc pdb and water pdb. Note that the
names of script variables may not be self explanatory. The
curator can associate the input and ouput ports with more
meaningful names using the tag @as, which creates an alias
names. For example, the output port gh5 psf of the setup
activity (the whole workflow) is associated with the alias
final structure psf . A script may retrieve or store the
results used by an input port and generate an output port in
a file during the execution. The @uri tag is used in such
cases to specify the path of the file within the file system. For
example, the output port protein pdb is associated with the
URI protein.pdb, representing the file where the split activity
will store the content of the protein pdb output port during
the execution.

Just like activities, input and output ports can be annotated
with text using the @desc tag. For example, the input port
initial structure has a description in line 5. The data depen-
dencies connecting the activities in the workflow are inferred
by matching the names of the input and output ports. A data
link connecting an output port to an input port is constructed if
those ports are associated with the same variable in the script.

Listing 1. Excerpt of an annotated MD script using YesWorkflow tags
1 #!/bin/bash
2
3 # @BEGIN setup @DESC setup of a MD simulation
4 # @PARAM directory path @AS directory
5 # @IN initial structure @DESC PDB: 8CEL
6 # @URI file:{directory}/structure.pdb
7 # @IN topology prot @URI file:top all22 prot.rtf
8 # @IN topology carb @URI file:top all22 prot.rtf
9 # @OUT gh5 psf @AS final structure psf

10 # @URI file:{directory}/gh5.psf
11 # @OUT gh5 pdb @AS final structure pdb
12 # @URI file:{directory}/gh5.pdb
13
14 # @BEGIN split
15 # @IN initial structure @URI file:structure.pdb
16 # @IN directory path @AS directory
17 # @OUT protein pdb @URI file:{directory}/protein.pdb
18 # @OUT bglc pdb @URI file:{directory}/bglc.pdb
19 # @OUT water pdb @URI file:{directory}/water.pdb
20 structure = $directory path"/structure.pdb"
21 protein = $directory path"/protein.pdb"
22 water = $directory path"/water.pdb"
23 bglc = $directory path"/bglc.pdb"
24 egrep −v ’(TIP3|BGLC)’ $structure > $protein
25 grep TIP3 $structure > $water
26 grep BGLC $structure > $bglc
27 # @END split
28
29 # @BEGIN psfgen @DESC generate the PSF file
30 # @PARAM topology prot @URI file:top all22 prot.rtf
31 # @PARAM topology carb @URI file:top all36 carb.rtf

http://w3id.org/w2share/s2rwro/

32 # @IN protein pdb @URI file:protein.pdb
33 # @IN bglc pdb @URI file:bglc.pdb
34 # @IN water pdb @URI file:water.pdb
35 # @OUT hyd pdb @URI file:hyd.pdb
36 # @OUT hyd psf @URI file:hyd.psf
37
38 ... commands ...
39
40 # @END psfgen
41
42 # @BEGIN solvate
43 # @IN hyd pdb @URI file:hyd.pdb
44 # @IN hyd psf @URI file:hyd.psf
45 # @OUT wbox pdb @URI file:wbox.pdb
46 # @OUT wbox psf @URI file:wbox.psf
47 echo "
48 package require solvate
49 solvate hyd.psf hyd.pdb −rotate −t 16 −o wbox
50 exit
51 " > solv.tcl
52
53 vmd −dispdev text −e solv.tcl
54 rm solv.tcl
55 # @END solvate
56
57 # @BEGIN ionize
58 # @IN wbox pdb @URI file:wbox.pdb
59 # @IN wbox psf @URI file:wbox.psf
60 # @OUT gh5 pdb @AS final structure pdb
61 # @URI file:gh5.pdb
62 # @OUT gh5 psf @AS final structure psf
63 # @URI file:gh5.psf
64
65 ... commands ...
66
67 # @END ionize
68
69 # @END setup

Once the script is annotated, YesWorkflow generates an
abstract workflow representation. Figure 2 depicts the abstract
workflow generated given the tags provided in Listing 1. It is

Fig. 2. Abstract workflow representation generated via YesWorkflow.

merely a graphical representation of the script.
Tag recognition is script-language independent, therefore

allowing a wide range of script-based experiments to be
converted into workflows and consequently a wider adoption
of our methodology. The abstract workflow representation
is also platform independent. It will be transformed into a
platform-specific executable representation in the next step of
our methodology.

Furthermore, especially for large, hard-to-read, workflows,
we can take advantage of some of the facilities offered by
YesWorkflow to help scientists understand a workflow. In
particular, YesWorkflow’s implementation generates a Datalog
file whose facts are constructed from the script tags and
follow YesWorkflow’s model (e.g., defining that a script is
composed of program blocks, ports and channels; or that
channels connect ports). We can thus pose Datalog queries
against this file to reveal data flow and dependencies within
a script. Such queries, as mentioned in [1], can, for instance,
allow the user to list the activities defined in the script and their
descriptions (when provided by the curator) or the activities
that invoke a particular module or external program.

It is worth stressing that the curator needs to respect two
constraints when using YesWorkflow in our context. The first
constraint concerns appropriate identification of all pro-
cessing blocks. Indeed, YesWorkflow extracts a workflow by
processing curator-provided tags; but scientists may not always
consider a given piece of script as relevant for tag processing
- and thus YesWorkflow will not produce an ”appropriate”
Wa. However, we are not merely trying to extract an abstract
workflow, but to ultimately create an executable workflow that
reflects the original script. Thus, the curator annotating the
script needs to correctly identify the program blocks that cover
the script in its entirety. In others words, taken together, the
program blocks that are identified and annotated by the curator
need to cover all of the original script.

The second constraint concerns appropriately tagging all
inputs and outputs of each processing block. In other words,
when using YesWorkflow in our context, for each program
block identified by the curator, the input and output ports
identified and annotated by the curator for that block need
to cover all of the inputs needed by that block to be executed,
as well as the outputs generated by that block as a result of
the execution. Again, in the general case, YesWorkflow does
not compel the curator to annotate all the inputs and outputs
that are respectively needed and generated by a program block.
However, since we are aiming for the creation of an executable
workflow, this second constraint needs also to be met.

VI. CREATING AN EXECUTABLE WORKFLOW FROM THE
ABSTRACT WORKFLOW

Given the abstract workflow Wa generated previously, the
curator needs to create an executable workflow We that
embodies the data analysis and processes as depicted by Wa

– and thus embodies the original script (Requirement 2).
Subsequently, the curator may choose to use resources, i.e.
datasets and operations, that are different from those used in

the script as s/he sees fit (Requirement 3). Moreover, prove-
nance information identifying how the executable workflow
came to be and its relationship with the script need to be
recorded (Requirement 4).

A. Step 2: Creating an Initial Executable Workflow

To create the executable workflow We, the curator needs
to specify for each activity in the abstract workflow, the
corresponding concrete activity that implements it.

A simple, yet effective approach to do so consists in
exploiting a readily available resource, namely the script code
itself.

Given an activity in Wa, the corresponding code in We is
generated by reusing the chunk (block) of the script that is
associated with the abstract workflow activity.

For example, the split abstract activity can be implemented
by copying the code from the script between the corresponding
@begin and @end tags (see lines 20 to 26 in Listing 1); the
same would apply to the solvate abstract activity (see lines
47 to 54 in Listing 1).

In the implementation of the activity, its input and output
ports will be associated with the names of the input and
output ports in the abstract workflow. However, they may be
different from the corresponding variable names in the script.
Therefore it is necessary to check consistency and, when
required, change the implementation of the activity, so that the
names of the variables are coherent with the port names. To do
so, the curator replaces the variable names in the script code
with the name used in the tag @as, when defined. This step
can be performed in largely automatic fashion. Consider the
implementation of the split activity, where the split program
block have a @in tag and an alias name defined via @as. In
this implementation, the name of the variable directory path
is modified to be directory, the name defined via @as (see
Listing 2).

Listing 2. Script code - correcting variable name in the implementation of
the split abstract activity
1 structure = %%directory%%"/structure.pdb"

2 protein = %%directory%%"/protein.pdb"

3 water = %%directory%%"/water.pdb"

4 bglc = %%directory%%"/bglc.pdb"

5 egrep −v ’(TIP3|BGLC)’ $structure > $protein
6 grep TIP3 $structure > $water
7 grep BGLC $structure > $bglc

This approach for conversion comes with two advantages:
(i) ease of conversion, since we are using a readily available
resource, i.e. the script code, and (ii) the ability to check and
debug the execution of We against the script execution, to
correct eventual mistakes in script-to-workflow conversion.

Once the curator specifies the implementation of each
activity in Wa, a concrete workflow specification We that
is conform to a given scientific workflow system can be
created. Without loss of generality, we used the Taverna system
[10], although our solution can be adapted to other scientific
workflow systems. We chose Taverna as our implementation

platform due to its widespread adoption in several eScience
domains and because it supports the script language adopted
in our case study.

The workflow curator must be aware of whether the lan-
guage script is supported by the chosen SWfMS or s/he may
assume the risk that the script will not be properly converted
into an executable workflow. At this point, the curator will
have an executable workflow designed to execute on a specific
SWfMS; this workflow can be from now on edited taking
advantage of the authoring capabilities of the chosen SWfMS.
Figure 3 illustrates the result of this implementation for our
case study; it shows a partial MD workflow that was created
according to methodology steps 1 and 2, for Taverna.

Fig. 3. Partial workflow for an MD script - initial implementation following
the first two steps of the methodology.

Once scientists execute this workflow, provenance informa-
tion regarding execution traces must be collected to serve as
input to steps 4 and 5 of our methodology. By executing the
workflow, s/he may verify, manually, its results, e.g., checking
them against the script results. If this check is not satisfactory,
the scientist should identify the problem with help of the
execution traces and re-design or re-implement the faulty
workflow elements – see more details at section VII.

B. Step 3: Refining the Executable Workflow

Requirement 3 states that the user should be able to
modify the workflow to use different computational and data
resources. To support this task, a list of available web services
and data sets should be shown to the user. For instance, in our
case study, scientists’ scripts use local data files containing
protein coordinates which they download from authoritative
web sources. This forces them to download such files from
the web, and update them locally whenever they are modified,
moreover making them keep track of many file directories,
sometimes with redundant information. An example of re-
finement would be the use of web services to retrieve these
files. An even more helpful refinement is, as we did, to reuse
workflows that perform this task: we retrieved from the myEx-
periment repository6 a small workflow that fetches a protein
structure on Protein Data Bank (PDB) from the RCSB PDB
archive7. This reused myExperiment workflow was inserted

6http://www.myexperiment.org
7http://www.rcsb.org/pdb/

http://www.myexperiment.org
http://www.rcsb.org/pdb/

in the beginning of our original workflow, replacing the local
PDB file used in the original script (see figure 4).

Here, the structure filepath input parameter of figure 3
was replaced by the sub-workflow within the light blue box,
copied from myExperiment workflow repositories.

Fig. 4. Workflow refined to use a reusable component that fetches PDB files
from the Web.

By the same token, in the life sciences, scientists can invoke
web services or reuse data sets listed on portals such as
Biocatalogue8, which provides a curated catalogue of Web
services, and Biotools9, which is a tools and data services
registry.

C. Recording Provenance Information of the Executable
Workflow

Requirement 4 states that provenance information must be
recorded to capture the steps performed in the transformation
from script to workflow. This transformation is recorded using
a provenance model, which allows identifying the correspon-
dence between workflow activiti(es) and script code, and
reusable components/web services and script excerpts.

The lineage of versions of the workflow should be stored, as
well. It is important to inform to future users that the workflow
was curated, and how this curation process occurred.

Listing 3. PROV statements
1 @base <http://w3id.org/s2rwro/md−setup/>.
2 @prefix oa: <http://www.w3.org/ns/oa#>.
3 @prefix prov: <http://www.w3.org/ns/prov−o#>.

8https://www.biocatalogue.org/
9https://bio.tools

4 @prefix wfdesc: <http://purl.org/w4ever/wfdesc#>.
5 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
6 @prefix wf4ever: <http://purl.org/wf4ever/wf4ever#>.
7
8 <resources/script.sh> a wf4ever:Script, prov:Entity.

9
10 <script/split> a wfdesc:ProcessImplementation;

11 prov:wasDerivedFrom <resources/script.sh>,
12 [

13 a oa:TextPositionSelector;

14 oa:start "674"^^xsd:Integer;

15 oa:end "933"^^xsd:Integer;

16 a prov:Entity

17].

18
19 <workflow/we> a wfdesc:Workflow, prov:Entity;

20 prov:wasDerivedFrom <resources/script.sh>;
21 wfdesc:hasSubProcess <workflow/we1/split>.
22
23 <workflow/we/split> a wfdesc:Process;

24 wfdesc:hasImplementation <script/split>.
25
26 <workflow/we1> a wfdesc:Workflow;

27 prov:wasDerivedFrom <workflow/we>;
28 wfdesc:hasSubProcess <workflow/we/split>.

Listing 3 shows RDF statements in Turtle syntax wrt the
provenance of We, the first workflow derived directly from
the script S, and the subsequent workflow We1 derived from
We. Line 8 describes the script resource as a wfever :
Script. To identify the chunk of the script that corresponds
to a given (executable) activity in We, we utilize the W3C
Web Annotation Data Model10. For example, lines 10 to
17 show that a fragment of the script (delimited using the
class ao : TextPositionSelector and the position within the
script source code) originated the implementation of a process
< script/split > (as a wfdesc : ProcessImplementation).
This information was extracted from the program block de-
fined using the YesWorkflow tags @begin and @end. Lines
19 to 21 show the declaration of We; it was derived from the
script and it has a subprocess which was declared in lines 23
and 24. This subprocess (defined as wfdesc : Process) is
associated with the implementation < script/split >. Lines
26 to 28 declared We1 as a derivation of We and with a
subprocess which is the same one from We, identified as
< workflow/we/split >.

VII. ANNOTATING THE WORKFLOW AND CHECKING ITS
QUALITY

It is critical to have a quality check where the scientist
explicitly assesses the workflow activities and data flow, com-
paring them to what was executed by the script.

Throughout the process of workflow creation and modifica-
tion, the scientist should provide annotations describing it (i.e.
activities and ports), and potentially the resources it utilizes.

10https://www.w3.org/TR/annotation-model

https://www.biocatalogue.org/
https://bio.tools
https://www.w3.org/TR/annotation-model

Part of these annotations can be migrated to the concrete
workflow from the YesWorkflow tags - e.g., @desc used in the
script to describe its program blocks and ports. Most SWfMS,
moreover, provide an annotation interface, which can be taken
advantage of.

A. Quality dimensions

Quality, here, involves three different quality dimensions11:
reproducibility, understandability for reuse, and performance.
Reproducibility assesses whether We – the first workflow
created from the script via conversion of the abstract work-
flow Wa – and its versions We1 . . .Wen reproduce S within
some scientist-defined tolerance thresholds. Understandability
is promoted with Step 5 (section VIII), by creating Workflow
Research Objects with associated annotations. This bundling
makes sure that the Research Object is understandable (and
thus reusable and reproducible by third parties). Performance
concerns the versions We1 . . .Wen. Assuming that they satisfy
the reproducibility criterion, performance provides measure-
ments of the advantages of executing these versions (e.g.,
faster execution).

These three dimensions make up for a fourth global quality
dimension - reliability. In this sense, we state that our method-
ology ensures reliable results in the transformation of script
S into a bundled Workflow Research Object that supports
experiment reproducibility, understandability for reuse, and
meets performance requirements.

B. Assessing quality of the workflows

Perhaps the main challenge of assessing all the quality
dimensions is to define how to compare script and workflow,
and the metrics to use to perform this comparison – i.e., how
to assess experiment reproducibility.

To check reproducibility, one may compare the script with
the workflow code to check if they are equivalent. However,
it is known that checking program equivalence is undecidable.
Moreover, the refined workflow may use remote programs
(e.g., via web services), for which the source code is not
available.

A more pragmatic approach to checking reproducibility
consists in shepherding the curator in assessing ”equivalence”,
always highly dependent on human expertise. We stipulate
that this should be performed in two stages: the first will
compare S to We, and the second will compare We with
each of its versions (obtained through refinement), to identify
divergences.

a) Comparing S to We: In more detail, the analysis of
differences between S and We should be performed in two
successive steps: (i) Visual analysis of Wa by the scientist, to
check for problems in, e.g., defining activities, or data flow;
and (ii) Comparison of execution results, given that We uses
exactly the same input files as S, and that the script code was
copied from S to We. Step (i) was mentioned in section VI-A.
Step (ii) can be automatic (e.g., for text files, use linux’ diff),

11A dimension, in quality literature, is a specific quality property that needs
to be taken into consideration in assessing quality.

or semi-automatic, combining algorithms and visual checks.
Nevertheless, at some point there may be the need to check
data semantics; here, annotations (and semantic annotations
of data) can help. Our case study basically involves text files
(PDB and similar files as inputs, molecular trajectories as
output), and thus textual comparison is enough.

In performing these steps, one must keep in mind that
comparisons should be done with the help of the human
curator. For instance, if the results are different in terms of
values, then the curator can be solicited to see if they are
scientifically similar or if they are completely different and
signal a problem with the workflow.

Common mistakes when converting S to We typically
include:

• the scientist did not clearly identify the main logical
processing units in the script and inserted YesWorkflow
tags in the wrong places - in this case, the visualization
of the abstract workflow will help identify the problem;

• the scientist made a mistake when migrating script code
into the corresponding activity - here, execution traces
help since they will show that some data sources are used
as inputs to incorrect activities;

• the scientist did not provide the correct input files and
parameters - again, traces will help;

• the coding of the workflow itself contained errors - this
may be checked with analysis of traces.

Last but not least, additional differences may be introduced
by the computing environment itself – e.g., the programming
environment used to execute the script wrt the SWfMS envi-
ronment.

b) Comparing We to its workflow versions: The rest of
the quality check is executed at the same time the scientist
improves and/or modifies the workflow through versions (e.g.,
changing algorithms, or data sets). This comparison can take
advantage of the PDIFF algorithm of [7]. PDIFF performs an
”equivalence check” of two workflows by comparing the traces
of their executions. Trace comparison is based on 4 elements:
the workflow graph obtained from the execution trace, the
input data, third-party data and processes, and the SWfMS
environment each workflow used. Traces become digraphs,
and the authors perform comparison of these digraphs to
obtain their differences. The specific point(s) of divergence
are identified through graph analysis, assisting the workflow
user to understand those differences. In our case, we assume
that We and its versions run in the same SWfMS.

VIII. BUNDLE RESOURCES INTO A WORKFLOW
RESEARCH OBJECT

In this step, the curator creates a Workflow Research Object
(WRO) that bundles the original script as well as other auxil-
iary resources obtained in the other steps of the methodology.
The creation of the WRO is conducted in parallel with the rest
of the methodology steps, in the sense that the curator adds
resources to the Workflow Research Object while performing
the other steps of the methodology.

The Workflow Research Object model allows curators to
aggregate resources and explicitly specify the relationship
between these resources and the workflow in a machine-
readable format using a suite of ontologies [8].

The result is a WRO that bundles a number of resources
that promote the understanding, reproducibility and ultimately
the reuse of the workflows obtained through refinement. More
specifically, the curator should bundle at least the following
resources into the WRO:

• annotated script files (an experiment may involves mul-
tiple scripts);

• the workflow We (and its versions);
• workflow provenance (documenting the transformation

from S to We and its versions);
• provenance traces of workflow executions (activities, in-

puts, outputs, intermediate results);
• research questions and hypotheses;
• output files;
By including these resources, it will be possible for sci-

entists not only to understand how the experiment was con-
ducted, but also its context. Moreover, curators can also bundle
additional documents that may help scientists understand the
workflow research object, e.g., technical reports and published
papers.

Fig. 5. A graphical example of a WRO bundle derived from our case study.

Figure 5 shows an example of a WRO created for our use
case. Arrows denote relationships and boxes denote instances
of concepts defined in ontologies. We used the Research
Object ontology12 to define the RDF-based manifest file
describing all the resources aggregated in the bundle and to
define the relationships (as ore:aggregates) with the wro :
ResearchObject instance. The figure also shows an example
of an annotation (ro : AggregatedAnnotation), defined in
the .ro/Ann1−protein.pdb.rdf file, describing protein.pdb.
Every file defined in the manifest is a ro : Resource and
may be also specialized in specific types of resources such
as wfdesc : Workflow, wfdesc : WorkflowRun and
wf4ever : Script. We used the RO Manager tool 13 to create
the WRO bundle file at the end of our methodological steps.

12http://purl.org/wf4ever/ro
13https://github.com/wf4ever/ro-manager

The bundle is available online at http://w3id.org/w2share/
s2rwro/.

However, it is not enough to create such research objects;
they must be made available to the scientific community in
a user-friendly manner, so that not only machines, but also
scientists can select the most appropriate ones. A possible
solution is to make them available by depositing them in
a Research Object Portal such as myExperiment and RO
Hub14 which have an interface to search and navigate between
resources aggregated in a RO.

IX. RELATED WORK

Part of related work was already discussed in the text, e.g.,
the work of [7] for workflow equivalence. Here, we present
some brief comments on some relevant sources.

Our methodology guides the transformation from script to
executable and verifiable workflow. We adopted YesWorkflow
[1], [4] to generate the abstract workflow visualizations before
creating the executable workflow (step 1 of our methodol-
ogy). Our choice of YesWorkflow was primarily based on its
simplicity of use, script language independence and platform
independence, as well as its open code. Moreover, it allows
generating a graphical representation of a script as a workflow.

Another (more system-specific) example of the construction
of executable workflows from source code is pursued in [11].
It relies on analysis of Abstract Syntax Trees (ASTs) from
the source code of Ruby scripts, to convert automatically
such scripts into an executable workflow targeted to a specific
SWfMS. Our approach differs from this in that we propose
a language-independent methodology to assist scientists to
convert scripts written in any language into an executable and
reproducible workflow.

There are several other tools and systems to create
executable workflows. Examples include HyperFlow [12],
StarFlow [13] and Swift [14]. These focus on how a declar-
ative language (defining the workflow model) in conjunction
with a general-purpose programming language (defining the
activities) can be combined to create executable workflows.
Our approach differs in the sense that we do not change the
way the scripts are developed, and neither is our approach
limited to a specific language.

The work of [15] proposes an executable visual-based
representation of a workflow. This was extended by [16] to
allow scientists two alternative ways of working with work-
flows: script-based and visual-based representations. A two-
way representation translator enables the conversion between
representations; workflow execution uses a single enactor, in-
dependent from the users’ preferred representation. [16] argues
that, in some cases, scripts are preferable to specify workflows
since scientists may want to look at code. We, instead, go the
opposite way, given the need for reusability by third parties:
we adopted a tool and a language and platform-independent
approach to transform scripts into workflow research objects.

14http://www.rohub.org/

http://purl.org/wf4ever/ro
https://github.com/wf4ever/ro-manager
http://w3id.org/w2share/s2rwro/
http://w3id.org/w2share/s2rwro/
http://www.rohub.org/

Another important aspect of our work concerns assessment
of quality with respect to reproducibility, reuse and under-
standability. Our preliminary work towards this goal is based
on [7], and their PDIFF algorithm that compares workflow
traces, produced by their SWFMS environment, e-Science
Central. Their framework uses as input the two provenance
digraphs, and produces as output the difference graph, in
which nodes may represent differences in data sources or
outputs, or differences in activities. They also provide algo-
rithms that compute the equivalence of three classes of data:
text, XML and models. For the purposes of comparing XML
documents, they use XOM15. To calculate the similarity of
mathematical models, they use the Analysis of Covariance
test that analyses the predictive performance of two models.
Yet another possibility to compare workflows appears in [17].
Here, the technique used is based in detecting plagiarism in
text. Though interesting, this is too generic for our goals.

X. CONCLUSIONS AND ONGOING WORK

This paper presented a methodology that guides curators in
a principled manner to transform scripts into reproducible and
reusable workflow research objects. This addresses an impor-
tant issue in the area of script provenance – that of providing
an executable and understandable provenance representation
of domain script runs. The methodology was elaborated based
on requirements that we elicited given our experience and
collaborations with scientists who use scripts in their data
analysis. The methodology was showcased via a real world
use case from the field of Molecular Dynamics.

Our ongoing work includes the evaluation of our method-
ology using other use cases, from fields other than molecular
dynamics. We are also considering the problem of synchroniz-
ing script changes to updates on the corresponding workflow
research objects. Moreover, we are investigating extending
YesWorkflow to support the semantic annotation of blocks
and using concepts from ontologies and vocabularies, and to
support workflow nesting, which is currently not supported by
YesWorkflow. Last but not least, there is a need to evaluate the
cost of the effectiveness of our proposal, in particular since in
some cases it may require extensive involvement of scientists
and curators.

ACKNOWLEDGMENTS

Work partially financed by FAPESP (2014/23861-4),
FAPESP/CEPID CCES (2013/08293-7), FAPESP-PRONEX
(eScience project), INCT in Web Science, and individual
grants from CNPq. We thank Prof. Munir Skaf and his group
from the Institute of Chemistry at Unicamp for making their
scripts and data available and for their valuable feedback.

REFERENCES

[1] T. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Belhajjame, R. K.
Bocinsky, Y. Cao, J. Cheney, F. Chirigati, S. Dey et al., “Yesworkflow:
A user-oriented, language-independent tool for recovering workflow
information from scripts,” International Journal of Digital Curation,
vol. 10, no. 1, pp. 298–313, 2015.

15http://xom.nu

[2] S. Dey, K. Belhajjame, D. Koop, M. Raul, and B. Ludäscher, “Linking
prospective and retrospective provenance in scripts,” in 7th USENIX
Workshop on the Theory and Practice of Provenance (TaPP 15), 2015.

[3] L. Murta, V. Braganholo, F. Chirigati, D. Koop, and J. Freire, “nowork-
flow: Capturing and analyzing provenance of scripts,” in Provenance
and Annotation of Data and Processes. Springer, 2014, pp. 71–83.

[4] T. McPhillips, S. Bowers, K. Belhajjame, and B. Ludäscher, “Retrospec-
tive provenance without a runtime provenance recorder,” in 7th USENIX
Workshop on the Theory and Practice of Provenance (TaPP 15), 2015.

[5] K. Belhajjame, O. Corcho, D. Garijo, J. Zhao, P. Missier, D. Newman,
R. Palma, S. Bechhofer, E. Garcı́a Cuesta, J. M. Gómez-Pérez et al.,
“Workflow-centric research objects: First class citizens in scholarly
discourse,” in Proceedings of Workshop on the Semantic Publishing,
(SePublica 2012), 2012.

[6] R. L. Silveira and M. S. Skaf, “Molecular dynamics simulations of fam-
ily 7 cellobiohydrolase mutants aimed at reducing product inhibition,”
The Journal of Physical Chemistry B, vol. 119, no. 29, pp. 9295–9303,
2014.

[7] P. Missier, S. Woodman, H. Hiden, and P. Watson, “Provenance and
data differencing for workflow reproducibility analysis,” Concurrency
and Computation: Practice and Experience, vol. 28, no. 4, pp. 995–
1015, 2016.

[8] K. Belhajjame, J. Zhao, D. Garijo, M. Gamble, K. Hettne, R. Palma,
E. Mina, O. Corcho, J. M. Gómez-Pérez, S. Bechhofer et al., “Using
a suite of ontologies for preserving workflow-centric research objects,”
Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 32, pp. 16–42, 2015.

[9] S. Bechhofer, D. De Roure, M. Gamble, C. Goble, and I. Buchan,
“Research objects: Towards exchange and reuse of digital knowledge,”
2010.

[10] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,
S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat,
K. Belhajjame, F. Bacall, A. Hardisty, A. Nieva de la Hidalga, M. P.
Balcazar Vargas, S. Sufi, and C. Goble, “The taverna workflow suite:
designing and executing workflows of web services on the desktop, web
or in the cloud,” Nucleic Acids Research, vol. 41, no. W1, pp. W557–
W561, 2013.

[11] M. Baranowski, A. Belloum, M. Bubak, and M. Malawski, “Construct-
ing workflows from script applications,” Scientific Programming, vol. 20,
no. 4, pp. 359–377, 2012.

[12] B. Balis, “Increasing scientific workflow programming productivity with
hyperflow,” in Proceedings of the 9th Workshop on Workflows in Support
of Large-Scale Science. IEEE Press, 2014, pp. 59–69.

[13] E. Angelino, D. Yamins, and M. Seltzer, “Starflow: A script-centric
data analysis environment,” in Provenance and Annotation of Data and
Processes. Springer, 2010, pp. 236–250.

[14] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, no. 9, pp. 633–652, 2011.

[15] J. Montagnat, B. Isnard, T. Glatard, K. Maheshwari, and M. B. Fornar-
ino, “A data-driven workflow language for grids based on array program-
ming principles,” in Proceedings of the 4th Workshop on Workflows in
Support of Large-Scale Science. ACM, 2009, p. 7.

[16] K. Maheshwari and J. Montagnat, “Scientific workflow development
using both visual and script-based representation,” in 6th World Congress
on Services (SERVICES-1). IEEE, 2010, pp. 328–335.

[17] D. d. O. Filipe Tadeu Santiago, “Verificação da Reprodução de Work-
flows Cientı́ficos por meio de Algoritmos de Detecção de Plágio
(in Portuguese),” in X Brazilian e-Science Workshop (BRESCI 2016).
Sociedade Brasileira de Computação, 2016.

http://xom.nu

	Introduction
	Case Study - Molecular Dynamics
	Requirements for Script Conversions
	Methodology to Assist in Script Conversions
	Generating an Abstract Workflow
	Creating an Executable Workflow from the Abstract Workflow
	Step 2: Creating an Initial Executable Workflow
	Step 3: Refining the Executable Workflow
	Recording Provenance Information of the Executable Workflow

	Annotating the Workflow and Checking its Quality
	Quality dimensions
	Assessing quality of the workflows

	Bundle Resources into a Workflow Research Object
	Related Work
	Conclusions and Ongoing Work
	References

